满分5 > 高中数学试题 >

已知椭圆的离心率为,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的...

已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)过椭圆C1的左顶点A做直线m,与圆O相交于两点R、S,若△ORS是钝角三角形,求直线m的斜率k的取值范围.
(1)先由离心率为 ,求出a,b,c的关系,再利用直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切,求出b即可求椭圆C1的方程; (2)把题中条件转化为动点M的轨迹是以l1:x=-1为准线,F2为焦点的抛物线,即可求点M的轨迹C2的方程; (3)先设出点R,S的坐标,利用△ORS是钝角三角形,求得,从而求出斜率k的取值范围. 【解析】 (1)由;(2分) 由直线 所以椭圆的方程是.(4分) (2)由条件,知|MF2|=|MP|.即动点M到定点F2的距离等于它到直线l1:x=-1的距离,由抛物线的定义得点M的轨迹C2的方程是y2=4x.                     (8分) (3)由(1),得圆O的方程是 设 得(10分) 则; 由.①(12分) 因为= 所以.②(13分) 由A、R、S三点不共线,知k≠0.                              ③ 由①、②、③,得直线m的斜率k的取值范围是(14分) (注:其它解法相应给分)
复制答案
考点分析:
相关试题推荐
过点P(1,0)作曲线C:y=x2(x∈(0,+∞)的切线,切点为M1,设M1在x轴上的投影是点P1.又过点P1作曲线C的切线,切点为M2,设M2在x轴上的投影是点P2,….依此下去,得到一系列点M1,M2…,Mn,…,设它们的横坐标a1,a2,…,an,…,构成数列为{an}.
(1)求证数列{an}是等比数列,并求其通项公式;
(2)令manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
已知函数f(x)=manfen5.com 满分网(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-2.
(1)求f(x)的解析式;
(2)若函数g(x)=f(x)-mx在区间[-2,2]上为减函数,求实数m的取值范围.
查看答案
manfen5.com 满分网如图,在四棱台ABCD-A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(1)求证:B1B∥平面D1AC;
(2)求证:平面D1AC⊥平面B1BDD1
查看答案
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日    期12月1日12月2日12月3日12月4日12月5日
温差x(°C)101113128
发芽数y(颗)2325302616
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程manfen5.com 满分网
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
查看答案
设函数manfen5.com 满分网
(1)写出函数f(x)的最小正周期及单调递减区间;
(2)当manfen5.com 满分网时,函数f(x)的最大值与最小值的和为manfen5.com 满分网,求a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.