如图,在四棱锥S-ABCD中,SA=AB=2,SB=SD=2
,底面ABCD是菱形,且∠ABC=60°,E为CD的中点.
(1)求四棱锥S-ABCD的体积;
(2)证明:CD⊥平面SAE;
(3)侧棱SB上是否存在F,使得CF∥平面SAE?并证明你的结论.
考点分析:
相关试题推荐
某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:
分组 | [500,900) | [900,1100) | [1100,1300) | [1300,1500) | [1500,1700) | [1700,1900) | [1900,+∞) |
频数 | 48 | 121 | 208 | 223 | 193 | 165 | 42 |
频率 | | | | | | | |
(1)将各组的频率填入表中;
(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;
(3)该公司某办公室新安装了这种型号的灯管2支,若将上述频率作为概率,试求恰有1支灯管的使用寿命不足1500小时的概率.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC
(1)求角B的大小;
(2)设向量
,求
的最大值.
查看答案
已知点A是曲线ρ=2sinθ上任意一点,则点A到直线
的距离的最小值是
.
查看答案
在△ABC中,若AB⊥AC,AC=b,BC=a,则△ABC的外接圆半径
,将此结论拓展到空间,可得出的正确结论是:在四面体S-ABC中,若SA、SB、SC两两垂直,SA=a,SB=b,SC=c,则四面体S-ABC的外接球半径R=
.
查看答案
把函数
图象上每一点的横坐标缩小为原来的
(纵坐标不变),再把所得的图象向左平移
个单位,所得图象的解析式为:
.
查看答案