根据实数a与b满足的两个关系式得到a与b是一个一元二次方程的两个解,利用根与系数的关系求出a+b和ab的值,然后要判断直线AB与单位圆的位置关系,只需求出圆心到直线的距离d与圆的半径1比较大小即可得到位置关系,所以先利用A与B的坐标写出直线AB的方程,然后利用点到直线的距离公式求出原点到直线AB的距离d,最后比较d与半径1的大小即可得到位置关系.
【解析】
由题知,实数a与b为一元二次方程的两个解,所以a+b=-,ab=-
又A(a2,a)、B(b2,b),所以直线AB的方程为:y-a=(x-a2),化简得x-(a+b)y+ab=0
则单位圆的圆心(0,0)到直线AB的距离d===<1,
所以直线AB与圆心在原点的单位圆的位置关系是相交.
故选B