满分5 > 高中数学试题 >

已知点D(0,-2),过点D作抛物线C1:x2=2py(p>0)的切线l,切点A...

manfen5.com 满分网已知点D(0,-2),过点D作抛物线C1:x2=2py(p>0)的切线l,切点A在第二象限,如图
(Ⅰ)求切点A的纵坐标;
(Ⅱ)若离心率为manfen5.com 满分网的椭圆manfen5.com 满分网恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k1,k2,若k1+2k2=4k,求椭圆方程.
(Ⅰ)设切点A(x,y),且,由切线l的斜率为,得l的方程为,再由点D(0,-2)在l上,能求出点A的纵坐标. (Ⅱ)由得,切线斜率,设B(x1,y1),切线方程为y=kx-2,由,得a2=4b2,所以椭圆方程为,b2=p+4,由,由此能求出椭圆方程. 【解析】 (Ⅰ)设切点A(x,y),且, 由切线l的斜率为,得l的方程为,又点D(0,-2)在l上, ∴,即点A的纵坐标y=2.…(5分) (Ⅱ)由(Ⅰ) 得,切线斜率, 设B(x1,y1),切线方程为y=kx-2,由,得a2=4b2,…(7分) 所以椭圆方程为,且过,∴b2=p+4…(9分) 由,∴,…(11分) = 将,b2=p+4代入得:p=32,所以b2=36,a2=144, 椭圆方程为.…(15分)
复制答案
考点分析:
相关试题推荐
如图,已知平行四边形ABCD中,AD=2,CD=manfen5.com 满分网,∠ADC=45°,AE⊥BC,垂足为E,沿直线AE将△BAE翻折成△B′AE,使得平面B′AE⊥平面AECD.连接B′D,P是B′D上的点.
(Ⅰ)当B′P=PD时,求证:CP⊥平面AB′D;
(Ⅱ)当B′P=2PD时,求二面角P-AC-D的余弦值.

manfen5.com 满分网 查看答案
已知数列{an}是首项a1=manfen5.com 满分网的等比数列,其前n项和Sn中S3,S4,S2成等差数列,
(1)求数列{an}的通项公式;
(2)设bn=manfen5.com 满分网|an|,若Tn=manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网,求证:manfen5.com 满分网≤Tnmanfen5.com 满分网
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC,bcosB,ccosA成等差数列.
(Ⅰ)求角B的大小;
(Ⅱ)若a+c=4,求AC边上中线长的最小值.
查看答案
设A和B是抛物线上的两个动点,且在A和B处的抛物线切线相互垂直,已知由A、B及抛物线的顶点所成的三角形重心的轨迹也是一抛物线,记为L1.对L1重复以上过程,又得一抛物线L2,余类推.设如此得到抛物线的序列为L1,L2,…,Ln,若抛物线的方程为y2=6x,经专家计算得,L1:y2=2(x-1),manfen5.com 满分网manfen5.com 满分网,…,manfen5.com 满分网.   则2Tn-3Sn=    查看答案
已知manfen5.com 满分网,则z=|2x+y+5|的最大值与最小值的差为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.