满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=6...

manfen5.com 满分网如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
(1)要证直线EF∥平面PCD,只需证明EF∥PD,EF不在平面PCD中,PD⊂平面PCD即可. (2)连接BD,证明BF⊥AD.说明平面PAD∩平面ABCD=AD,推出BF⊥平面PAD;然后证明平面BEF⊥平面PAD. 证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD. 又因为EF不在平面PCD中,PD⊂平面PCD 所以直线EF∥平面PCD. (2)连接BD.因为AB=AD,∠BAD=60°. 所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD. 因为平面PAD⊥平面ABCD,BF⊂平面ABCD, 平面PAD∩平面ABCD=AD,所以BF⊥平面PAD. 又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,且manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(3n-2)an,求数列{bn}的前n项和为Tn
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
某中学共有1000名学生参加了该地区高三第一次质量检测的数学考试,数学成绩如下表所示:
数学成绩分组[0,30)[30,60)[60,90)[90,120)[120,150]
人数6090300x160
(I)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,学校将采用分层抽样的方法抽取100名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,求他被抽中的概率;
(II)已知本次数学成绩的优秀线为110分,试根据所提供数据估计该中学达到优秀线的人数;
(III)作出频率分布直方图,并估计该学校本次考试的数学平均分.(同一组中的数据用该组区间的中点值作代表)
查看答案
已知函数manfen5.com 满分网若关于x 的方程f(x)=k有两个不同的实根,则数k的取值范围是    查看答案
已知向量manfen5.com 满分网manfen5.com 满分网满足manfen5.com 满分网=3,manfen5.com 满分网=2,a与b的夹角为60°,则a•b=    .若(a-mb)⊥a,则实数m=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.