满分5 > 高中数学试题 >

已知函数f(x)=ax2+lnx(a∈R). (1)当时,求f(x)在区间[1,...

已知函数f(x)=ax2+lnx(a∈R).
(1)当manfen5.com 满分网时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),
f2(x)的“活动函数”.
已知函数manfen5.com 满分网
若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,
求a的取值范围.
(1)由题意得 ,>0,∴f(x)在区间[1,e]上为增函数,即可求出函数的最值. (2)由题意得:令 <0,对x∈(1,+∞)恒成立,且h(x)=f1(x)-f(x)=<0对x∈(1,+∞)恒成立,分类讨论当 或 时两种情况求函数的最大值,可得到a的范围.又因为h′(x)=-x+2a-=<0,h(x)在(1,+∞)上为减函数,可得到a的另一个范围,综合可得a的范围. 【解析】 (1)当 时,,; 对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数, ∴,. (2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x) 令 <0,对x∈(1,+∞)恒成立, 且h(x)=f1(x)-f(x)=<0对x∈(1,+∞)恒成立, ∵ 1)若 ,令p′(x)=0,得极值点x1=1,, 当x2>x1=1,即 时,在(x2,+∞)上有p′(x)>0, 此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意; 当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意; 2)若 ,则有2a-1≤0,此时在区间(1,+∞)上恒有p′(x)<0, 从而p(x)在区间(1,+∞)上是减函数; 要使p(x)<0在此区间上恒成立,只须满足 , 所以 ≤a≤. 又因为h′(x)=-x+2a-=<0,h(x)在(1,+∞)上为减函数, h(x)<h(1)=+2a≤0,所以a≤ 综合可知a的范围是[,].
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案
已知数列{an}的前n项和为Sn,且manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(3n-2)an,求数列{bn}的前n项和为Tn
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
某中学共有1000名学生参加了该地区高三第一次质量检测的数学考试,数学成绩如下表所示:
数学成绩分组[0,30)[30,60)[60,90)[90,120)[120,150]
人数6090300x160
(I)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,学校将采用分层抽样的方法抽取100名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,求他被抽中的概率;
(II)已知本次数学成绩的优秀线为110分,试根据所提供数据估计该中学达到优秀线的人数;
(III)作出频率分布直方图,并估计该学校本次考试的数学平均分.(同一组中的数据用该组区间的中点值作代表)
查看答案
已知函数manfen5.com 满分网若关于x 的方程f(x)=k有两个不同的实根,则数k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.