选修4-5:不等式选讲
设f(x)=|x﹣1|﹣2|x+1|的最大值为m.
(Ⅰ)求m;
(Ⅱ)若,a2+2b2+c2=m,求ab+bc的最大值.
选修4-4:坐标系与参数方程
已知曲线C1的极坐标方程为ρ2cos 2θ=8,曲线C2的极坐标方程为θ=,曲线C1,C2相交于A,B两点.
(I)求A,B两点的极坐标;
(II)曲线C1与直线 (t为参数)分别相交于M,N两点,求线段MN的长度.
设函数
(Ⅰ)讨论的单调性;
(Ⅱ)若k为正数,且存在x0使得,求k的取值范围.
已知椭圆C的左、右焦点分别为、,且经过点
(I)求椭圆C的方程:
(II)直线y=kx(kR,k≠0)与椭圆C相交于A,B两点,D点为椭圆C上的动点,且|AD|=|BD|,请问△ABD的面积是否存在最小值?若存在,求出此时直线AB的方程:若不存在,说明理由.
如图,ABC﹣A1B1C1是底面边长为2,高为的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<λ<1).
(Ⅰ)证明:PQ∥A1B1;
(Ⅱ)当时,在图中作出点C在平面ABQP内的正投影F(说明作法及理由),并求四面体CABF的体积.
某中学共有1000名文科学生参加了该市高三第一次质量检查的考试,其中数学成绩如下表所示:
数学成绩分组 | [50,70) | [70,90) | [90,110) | [110,130) | [130,150] |
人数 | 60 | 400 | 360 | 100 |
(Ⅰ)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,年级将采用分层抽样的方法抽取100
名同学进行问卷调查. 甲同学在本次测试中数学成绩为75分,求他被抽中的概率;
(Ⅱ)年级将本次数学成绩75分以下的学生当作“数学学困生”进行辅导,请根据所提供数据估计“数
学学困生”的人数;
(III)请根据所提供数据估计该学校文科学生本次考试的数学平均分.