在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为,
(l)设为参数,若,求直线的参数方程;
(2)已知直线与曲线交于,设,且,求实数的值.
已知函数,其中.
(1)若,求曲线在处的切线方程;
(2)设函数若至少存在一个,使得成立,求实数a的取值范围.
在平面直角坐标系中,已知椭圆的离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)设直线与圆相切,与椭圆相交于两点,求证:是定值.
每年七月份,我国J地区有25天左右的降雨时间,如图是J地区S镇2000-2018年降雨量(单位:mm)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:
(1)假设每年的降雨天气相互独立,求S镇未来三年里至少有两年的降雨量超过350mm的概率;
(2)在S镇承包了20亩土地种植水果的老李过去种植的甲品种水果,平均每年的总利润为31.1万元.而乙品种水果的亩产量m(kg/亩)与降雨量之间的关系如下面统计表所示,又知乙品种水果的单位利润为32-0.01×m(元/kg),请帮助老李排解忧愁,他来年应该种植哪个品种的水果可以使利润ξ(万元)的期望更大?(需说明理由);
降雨量 | [100,200) | [200,300) | [300,400) | [400,500) |
亩产量 | 500 | 700 | 600 | 400 |
如图,在四棱锥中,侧面是等边三角形,且平面平面,为的中点,,,,.
(1)求证:平面;
(2)求二面角的余弦值;
设等差数列的公差为d,前n项和为成等比数列.
(1)求数列的通项公式;
(2)设,求数列的前n项和.