已知函数.
(1)当时,求函数的单调区间;
(2)若函数的导函数在上有三个零点,求实数a的取值范围.
已知椭圆的左、右焦点分别为,过点且斜率为 的直线和以椭圆的右顶点为圆心,短半轴为半径的圆相切.
(1)求椭圆的方程;
(2)椭圆的左、右顶点分为A,B,过右焦点的直线l交椭圆于P,Q两点,求四边形APBQ面积的最大值.
已知四棱锥P-ABCD中,底面ABCD为直角梯形,平面ABCD,且.
(1)求证:平面PBD;
(2)若PB与平面ABCD所成的角为,求二面角D-PC-B的余弦值.
在中,内角A,B,C所对的边分别为a,b,c,且满足.
(1)当时,求的值;
(2)若D为AC的中点,且,求的周长.
高三学生为了迎接高考,要经常进行模拟考试,锻炼应试能力,某学生从升入高三到高考要参加10次模拟考试,下面是高三第一学期某学生参加5次模拟考试的数学成绩表:
模拟考试第x次 | 1 | 2 | 3 | 4 | 5 |
考试成绩y分 | 90 | 100 | 105 | 105 | 100 |
(1)已知该考生的模拟考试成绩y与模拟考试的次数x满足回归直线方程,若高考看作第11次模拟考试,试估计该考生的高考数学成绩;
(2)把这5次模拟考试的数学成绩单放在5个相同的信封中,从中随机抽取3份试卷的成绩单进行研究,设抽取考试成绩不等于平均值的个数为,求出的分布列与数学期望.
参考公式:.
已知双曲线的右焦点为F,左顶点为A,O为坐标原点,以OF为直径作圆交双曲线的一条渐近线于点P,且,则双曲线的离心率________.