直径为2的球的表面积与此球的体积之比是__________.
已知函数(为常数,且),且数列是首项为,公差为的等差数列.
(1)求证:数列是等比数列;
(2)若,当时,求数列的前项和的最小值;
(3)若,问是否存在实数,使得是递增数列?若存在,求出的范围;若不存在,说明理由.
已知椭圆上两个不同的点、关于直线对称.
(1)若已知,为椭圆上动点,证明:;
(2)求实数的取值范围;
(3)求面积的最大值(为坐标原点).
某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列,每年发放电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?
|
|
|
|
|
|
| . |
|
|
已知角,,是的三个内角,,,是各角的对边,若向量,,且.
(1)求的值;
(2)求的最大值.
在三棱锥中,已知、、两两垂直,,,三棱锥的体积为20,是的中点,求异面直线、所成角的大小(结果用反三角函数值表示).