某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取个,利用水果的等级分类标准得到的数据如下:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
个数 | 10 | 30 | 40 | 20 |
(1)若将频率视为概率,从这个水果中有放回地随机抽取个,求恰好有个水果是礼品果的概率.(结果用分数表示)
(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.
方案:不分类卖出,单价为元.
方案:分类卖出,分类后的水果售价如下:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
售价(元/kg) | 16 | 18 | 22 | 24 |
从采购商的角度考虑,应该采用哪种方案?
(3)用分层抽样的方法从这个水果中抽取个,再从抽取的个水果中随机抽取个,表示抽取的是精品果的数量,求的分布列及数学期望.
如图,等腰梯形中,,,E为CD中点,将沿AE折到的位置.
(1)证明:;
(2)当折叠过程中所得四棱锥体积取最大值时,求直线与平面所成角的正弦值.
高铁是我国国家名片之一,高铁的修建凝聚着中国人的智慧与汗水.如图所示,B、E、F为山脚两侧共线的三点,在山顶A处测得这三点的俯角分别为、、,计划沿直线BF开通穿山隧道,现已测得BC、DE、EF三段线段的长度分别为3、1、2.
(1)求出线段AE的长度;
(2)求出隧道CD的长度.
已知直线是曲线的一条切线,则的取值范围是_________.
中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人要走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第五天走的路程为______里.
为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是________.