已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上一点,则( )
A. B.
C. D.
已知tan2,则=( )
A. B. C.2 D.
已知函数.
(1)当时,解不等式;
(2)若对任意的,不等式恒成立,求a的取值范围.
在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线l的参数方程为(t为参数,).
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C交于A,B两点,直线l的倾斜角,P点坐标为,求的最小值.
已知函数有两个不同零点,.
(1)求a的取值范围;
(2)证明:当时,.
已知椭圆的左,右焦点分别是,,离心率为,直线被椭圆C截得的线段长为.
(1)求椭圆C的方程;
(2)过点且斜率为k的直线l交椭圆C于A,B两点,交x轴于P点,点A关于x轴的对称点为M,直线BM交x轴于Q点.求证:(O为坐标原点)为常数.