同时掷两枚骰子,则向上的点数相等的概率为( )
A. B. C. D.
电视台某节目组要从名观众中抽取名幸运观众.先用简单随机抽样从人中剔除人,剩下的人再按系统抽样方法抽取人,则在人中,每个人被抽取的可能性( )
A.都相等,且为 B.都相等,且为
C.均不相等 D.不全相等
若是第四象限角,则是( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
已知直线与抛物线:交于,两点,且的面积为16(为坐标原点).
(1)求的方程.
(2)直线经过的焦点且不与轴垂直,与交于,两点,若线段的垂直平分线与轴交于点,试问在轴上是否存在点,使为定值?若存在,求该定值及的坐标;若不存在,请说明理由.
已如椭圆E:()的离心率为,点在E上.
(1)求E的方程:
(2)斜率不为0的直线l经过点,且与E交于P,Q两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由
已知椭圆:的长轴长是离心率的两倍,直线:交于,两点,且的中点横坐标为.
(1)求椭圆C的方程;
(2)若,是椭圆上的点,为坐标原点,且满足,求证:,斜率的平方之积是定值.