已知焦点在轴上的椭圆上的点到两个焦点的距离和为10,椭圆经过点.
(1)求椭圆的标准方程;
(2)过椭圆的右焦点作与轴垂直的直线,直线上存在、两点满足,求△面积的最小值;
(3)若与轴不垂直的直线交椭圆于、两点,交轴于定点,线段的垂直平分线交轴于点,且为定值,求点的坐标.
某企业生产的产品具有60个月的时效性,在时效期内,企业投入50万元经销该产品,为了获得更多的利润,企业将每月获得利润的10%再投入到次月的经营中,市场调研表明,该企业在经销这个产品的第个月的利润是(单位:万元),记第个月的当月利润率为,例.
(1)求第个月的当月利润率;
(2)求该企业在经销此产品期间,哪一个月的当月利润率最大,并求出该月的当月利润率.
已知向量,,其中,记.
(1)若函数的最小正周期为,求的值;
(2)在(1)的条件下,已知△的内角、、对应的边分别为、、,若,且,,求△的面积.
如图,在四棱锥中,底面是矩形, 底面,是的中点.已知,,.
求:(1).三角形的面积;
(2).异面直线与所成的角的大小.
设等比数列的公比为,其前项之积为,并且满足条件:,,,给出下列结论:①;② ;③是数列中的最大项;④使成立的最大自然数等于4039;其中正确结论的序号为( )
A.①② B.①③ C.①③④ D.①②③④
过抛物线()的焦点作两条相互垂直的弦和,则的值为( )
A. B. C. D.