若直线的斜率为,在轴上的截距为,则( )
A., B.,
C., D.,
已知F1,F2分别为椭圆C:的左焦点.右焦点,椭圆上的点与F1的最大距离等于4,离心率等于,过左焦点F的直线l交椭圆于M,N两点,圆E内切于三角形F2MN;
(1)求椭圆的标准方程
(2)求圆E半径的最大值
给定直线m:y=2x-16,抛物线C:y2=ax(a>0).
(1)当抛物线C的焦点在直线m上时,确定抛物线C的方程;
(2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标y=8,△ABC的重心恰在抛物线C的焦点上,求直线BC的方程.
给定椭圆,称圆心在原点O,半径为的圆是椭圆C的“伴椭圆”,若椭圆C的一个焦点为,其短轴上的一个端点到距离为.
(1)求椭圆C的方程及其“伴椭圆”的方程;
(2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆C的“伴椭圆”相交于M、N两点,求弦MN的长.
已知的定义域为,,使得不等式成立,关于的不等式的解集记为.
(1)若为真,求实数的取值集合;
(2)在(1)的条件下,若是的充分不必要条件,求实数的取值范围.
已知抛物线y2=2px的焦点为F,准线方程是x=﹣1.
(I)求此抛物线的方程;
(Ⅱ)设点M在此抛物线上,且|MF|=3,若O为坐标原点,求△OFM的面积.