已知函数.
(1)讨论的单调性;
(2)设,若且有两个零点,求的取值范围.
某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:
等级 | 不合格 | 合格 | ||
得分 | ||||
频数 | 6 | 24 |
(Ⅰ)求,,的值;
(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为,求的分布列及数学期望;
(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效.若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?
已知椭圆的两个焦点分别是,离心率,为椭圆上任意一点,且的面积最大值为.
(1)求椭圆的方程.
(2)过焦点的直线与圆相切于点,交椭圆于两点,证明:.
如图,在四棱锥中,底面为矩形,,侧面为等边三角形且垂直于底面,是的中点.
(1)在棱上取一点使直线∥平面并证明;
(2)在(1)的条件下,当棱上存在一点,使得直线与底面所成角为时,求二面角的余弦值.
在中,角的对边分别为,且.
(1)求;
(2)若,且边上的中线长为,求的面积.
已知数列满足,数列的前项和,则数列的前n项和___________.