已知四棱锥中,底面是直角梯形,∥,,,,又平面,且,点在棱上且.
(1)求证:;
(2)求与平面所成角的正弦值;
(3)求二面角的大小.
已知定点M(0,2),N(-2,0),直线l:kx-y-2k+2=0(k为常数).
(1)若点M,N到直线l的距离相等,求实数k的值;
(2)对于l上任意一点P,∠MPN恒为锐角,求实数k的取值范围.
已知,求的最小值.
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积.
已知集合,集合.
(1)求;
(2)若,且,求实数的取值范围.
下列说法中正确的有______.
①.
②已知,则.
③函数的图象与函数的图象关于原点对称.
④函数的递增区间为.