已知椭圆的长轴长为,焦距为2,抛物线的准线经过椭圆的左焦点.
(1)求椭圆与抛物线的方程;
(2)直线经过椭圆的上顶点且与抛物线交于,两点,直线,与抛物线分别交于点(异于点),(异于点),证明:直线的斜率为定值.
某市为了解本市1万名小学生的普通话水平,在全市范围内进行了普通话测试,测试后对每个小学生的普通话测试成绩进行统计,发现总体(这1万名小学生普通话测试成绩)服从正态分布.
(1)从这1万名小学生中任意抽取1名小学生,求这名小学生的普通话测试成绩在内的概率;
(2)现在从总体中随机抽取12名小学生的普通话测试成绩,对应的数据如下:50,52,56,62,63,68,65,64,72,80,67,90.从这12个数据中随机选取4个,记表示大于总体平均分的个数,求的方差.
参考数据:若,则,,.
如图,在三棱柱中,侧面为菱形,为的中点,为等腰直角三角形,,,且.
(1)证明:平面.
(2)求与平面所成角的正弦值.
在公差为的等差数列中,,,,且.
(1)求的通项公式;
(2)若,,成等比数列,求数列的前项和.
如图,在四棱锥中,,平面,底面为正方形,且.若四棱锥的每个顶点都在球的球面上,则球的表面积的最小值为_____;当四棱锥的体积取得最大值时,二面角的正切值为_______.
已知直线与双曲线的一条渐近线交于点,双曲线的左、右顶点分别为,,若,则双曲线的离心率为_____.