一个口袋中有5个同样大小的球,编号为3,4,5,6,7,从中同时取出3个小球,以表示取出的球的最小号码,求的分布列,均值,方差.
已知在区间上是增函数.
(1)求实数的值组成的集合;
(2)设关于的方程的两个非零实根为、.试问:是否存在实数,使得不等式对任意及恒成立?若存在,求的取值范围;若不存在,请说明理由.
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点,平行于的直线在轴上的截距为,交椭圆于两个不同点.
(1)求椭圆的标准方程以及的取值范围;
(2)求证直线与轴始终围成一个等腰三角形.
(本题满分12分)
今年十一黄金周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:
性别与对景区的服务是否满意 单位:名
| 男 | 女 | 总计 |
满意 | 50 | 30 | 80 |
不满意 | 10 | 20 | 30 |
总计 | 60 | 50 | 110 |
(1)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?
(2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;
(3)根据以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关
注:
临界值表:
P() | 0.05 | 0.025 | 0.010 | 0.005 |
| 3.841 | 5.024 | 6.635 | 7.879 |
如图,四棱锥中,,,,,PA=PD=CD=BC=1.
(1)求证:平面平面;
(2)求直线与平面所成角的正弦值.
已知数列的前项和,数列为等比数列,且满足,
(1)求数列,的通项公式;
(2)求数列的前项和.