已知函数.
(1)当时,解不等式;
(2)若,,求证:.
在平面直角坐标系中,曲线.以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)求曲线的极坐标方程和直线的普通方程;
(2)直线与直线交于点,与曲线交于两点,求的值.
已知函数.
(1)讨论时,函数的单调性;
(2)若,函数有两个零点,求实数的取值范围.
已知椭圆,长轴长为4,,分别为椭圆的左,右焦点,点是椭圆上的任意一点,面积的最大为,且取得最大值时为钝角.
(1)求椭圆的标准方程;
(2)已知圆,点为圆上任意一点,过点的切线分别交椭圆于两点,且,求的值.
某公司生产一种新产品,从产品中抽取100件作为样本,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图.
(1)用每组区间的中点值代表该组数据,估算这批产品的样本平均数和样本方差的;
(2)从指标值落在的产品中随机抽取2件做进一步检测,设抽取的产品的指标在的件数为,求的分布列和数学期望;
(3)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,近似为样本平均值,近似为样本方差,若产品质量指标值大于236.6,则产品不合格,该厂生产10万件该产品,求这批产品不合格的件数.
参考数据:,,,.
如图,在三棱柱中,侧面底面,四边形为菱形,是边长为2的等边三角形,,点为的中点.
(1)若平面与平面交于直线,求证:;
(2)求二面角的余弦值.