设,,下列图形能表示从集合A到集合B的函数图像的是( )
A. B.
C. D.
已知集合,,那么( )
A. B. C. D.
已知椭圆的离心率为,过焦点且垂直于轴的直线被椭圆所截得的弦长为.
(1)求椭圆的标准方程;
(2)若经过点的直线与椭圆交于不同的两点是坐标原点,求的取值范围.
已知分别为椭圆的左、右焦点,为该椭圆的一条垂直于轴的动弦,直线与轴交于点,直线与直线的交点为.
(1)证明:点恒在椭圆上.
(2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.
已知抛物线,,,其中,过的直线交抛物线与,.
(I)当,且直线垂直于轴时,求证:为直角三角形;
(Ⅱ)若,当点在直线上时,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.
已知为椭圆上的动点,轴于,为的中点,设点的轨迹为.
(1)求曲线的方程;
(2)若点,直线与曲线交于,两点,与椭圆交于,两点,问是否存在与无关的实数,使得成立,若存在求出的值;若不存在请说明理由(,,,分别表示直线,,,的斜率).