把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( )
A. 对立事件 B. 互斥但不对立事件
C. 不可能事件 D. 必然事件
将一枚骰子抛掷两次.
(1)写出试验的样本空间;
(2)用集合表示事件“向上的点数之和大于8”.
已知椭圆C:()的短轴长和焦距相等,左、右焦点分别为、,点满足:.已知直线l与椭圆C相交于A,B两点.
(1)求椭圆C的标准方程;
(2)若直线l过点,且,求直线l的方程;
(3)若直线l与曲线相切于点(),且中点的横坐标等于,证明:符合题意的点T有两个,并任求出其中一个的坐标.
已知函数.
(1)证明:;
(2)数列满足:,().
(ⅰ)证明:();
(ⅱ)证明:,.
有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:
甲公司 | 乙公司 | |||||||||
职位 | A | B | C | D | 职位 | A | B | C | D | |
月薪/元 | 6000 | 7000 | 8000 | 9000 | 月薪/元 | 5000 | 7000 | 9000 | 11000 | |
获得相应职位概率 |
0.4 |
0.3 |
0.2 |
0.1 | 获得相应职位概率 |
0.4 |
0.3 |
0.2 |
0.1 | |
(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;
(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿做了统计,得到以下数据分布:
选择意愿 人员结构 | 40岁以上(含40岁)男性 | 40岁以上(含40岁)女性 | 40岁以下男性 | 40岁以下女性 |
选择甲公司 | 110 | 120 | 140 | 80 |
选择乙公司 | 150 | 90 | 200 | 110 |
若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k1=5.5513,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?
附:
0.050 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
如图,在三棱台中,,G,H分别为,上的点,平面平面,,.
(1)证明:平面平面;
(2)若,,求二面角的大小.