满分5 > 高中数学试题 >

已知,函数. (1)当时,解不等式; (2)若关于的方程的解集中恰有一个元素,求...

已知,函数.

(1)当时,解不等式

(2)若关于的方程的解集中恰有一个元素,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

 

(1).(2).(3). 【解析】 试题(1)当时,解对数不等式即可;(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论的取值范围进行求解即可;(3)根据条件得到,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可. 试题解析:(1)由,得,解得. (2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2(a)﹣log2[(a﹣4)x+2a﹣5]=0. 即log2(a)=log2[(a﹣4)x+2a﹣5], 即a=(a﹣4)x+2a﹣5>0,① 则(a﹣4)x2+(a﹣5)x﹣1=0, 即(x+1)[(a﹣4)x﹣1]=0,②, 当a=4时,方程②的解为x=﹣1,代入①,成立 当a=3时,方程②的解为x=﹣1,代入①,成立 当a≠4且a≠3时,方程②的解为x=﹣1或x, 若x=﹣1是方程①的解,则a=a﹣1>0,即a>1, 若x是方程①的解,则a=2a﹣4>0,即a>2, 则要使方程①有且仅有一个解,则1<a≤2. 综上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素, 则a的取值范围是1<a≤2,或a=3或a=4. (3)函数f(x)在区间[t,t+1]上单调递减, 由题意得f(t)﹣f(t+1)≤1, 即log2(a)﹣log2(a)≤1, 即a≤2(a),即a 设1﹣t=r,则0≤r, , 当r=0时,0, 当0<r时,, ∵y=r在(0,)上递减, ∴r, ∴, ∴实数a的取值范围是a. 【一题多解】 (3)还可采用:当时,,, 所以在上单调递减. 则函数在区间上的最大值与最小值分别为,. 即,对任意成立. 因为,所以函数在区间上单调递增, 时,有最小值,由,得. 故的取值范围为.  
复制答案
考点分析:
相关试题推荐

同时满足条件和对任意都有成立.

1)求的解析式;

2)设函数的定义域为,且在定义域内,求

3)求函数的值域.

 

查看答案

,设其定义域上的区间.

1)判断该函数的奇偶性,并证明;

2)当时,判断函数在区间)上的单调性,并证明;

3)当时,若存在区间),使函数在该区间上的值域为,求实数的取值范围.

 

查看答案

若函数满足,且时,,则函数的图像与函数的图像交点个数为(   

A.2 B.6 C.8 D.多于8

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.