满分5 > 高中数学试题 >

已知函数 (1)若a=1,求f(x)的极值; (2)若存在x0∈[1,e],使得...

已知函数

(1)若a=1,求f(x)的极值;

(2)若存在x0[1,e],使得f(x0)<g(x0)成立,求实数a的取值范围.

 

(1)f(x)的极小值是f(1)=1,无极大值(2) 【解析】 (1)求出导数,由不等式确定增区间,由确定减区间,从而得极值; (2)问题等价于,因此用导数研究函数的最小值,由最小值小于0可求得的范围,注意要分类讨论. (1)a=1时,f(x)=x﹣lnx,函数f(x)的定义域是(0,+∞), f′(x)=1﹣=,令f′(x)>0,解得x>1,令f′(x)<0,解得:0<x<1, f(x)在(0,1)递减,在(1,+∞)递增,故f(x)的极小值是f(1)=1,无极大值; (2)存在x0∈[1,e],使得f(x0)<g(x0)成立,等价于[f(x)﹣g(x)]min<0, (x∈[1,e])成立,设h(x)=f(x)﹣g(x)=x﹣alnx+, 则h′(x)=,令h′(x)=0,解得:x=﹣1(舍),x=1+a; ①当1+a≥e,h(x)在[1,e]递减,∴h(x)min=h(e)=e2﹣ea+1+a, 令h(x)min<0,解得:a>; ②当1+a<e时,h(x)在(1,a+1)递减,在(a+1,e)递增, ∴h(x)min=h(1+a)=a[1﹣ln(a+1)]+2>2与h(x)min<0矛盾, 综上,a>.
复制答案
考点分析:
相关试题推荐

已知椭圆Cab0)的右焦点为F1,0),且点P在椭圆C上,O为坐标原点.

1)求椭圆C的标准方程;

2)设过定点T0,2)的直线l与椭圆C交于不同的两点AB,且∠AOB为锐角,求直线l的斜率k的取值范围.

 

查看答案

某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

保费

 

随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:

出险次数

0

1

2

3

4

频数

60

50

30

30

20

10

 

 

I)记A为事件:“一续保人本年度的保费不高于基本保费”.求PA)的估计值;

(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求PB)的估计值;

(Ⅲ)求续保人本年度的平均保费估计值.

 

查看答案

如图,四棱锥中,底面,且底面为平行四边形,若,,.

1)求证:;

2)若,求点到平面的距离.

 

查看答案

已知是公差为3的等差数列,数列满足

(Ⅰ)求的通项公式;    (Ⅱ)求的前n项和.

 

查看答案

如图,已知圆柱的轴截面是正方形,C是圆柱下底面弧的中点,是圆柱上底面弧的中点,那么异面直线所成角的正切值为_______________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.