下列关于向量的结论:(1)任一向量与它的相反向量不相等;(2)向量与平行,则与的方向相同或相反;(3)起点不同,但方向相同且模相等的向量是相等向量;(4)若向量与同向,且,则.其中正确的序号为( )
A.(1)(2) B.(2)(3) C.(4) D.(3)
已知椭圆的一个焦点是F(1,0),O为坐标原点.
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点F的直线l交椭圆于A、B两点,若直线l绕点F任意转动,总有,求a的取值范围.
如图,在平行四边形中,,,,分别是和的中点,将沿着向上翻折到的位置,连接,.
(1)求证:平面;
(2)若翻折后,四棱锥的体积,求的面积.
足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色学校y(百个) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱.
(已知:,则认为y与x线性相关性很强;,则认为y与x线性相关性一般;,则认为y与x线性相关性较):
(2)求y关于x的线性回归方程,并预测A地区2020年足球特色学校的个数(精确到个).
参考公式和数据:,
,
.
已知动点到定点的距离比到定直线的距离小,其轨迹为.
(1)求的方程
(2)过点且不与坐标轴垂直的直线与交于、两点,线段的垂直平分线与轴交于点,求的取值范围.
我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照,分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中的值;
(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(3)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由.