在直角坐标系.xOy中,曲线C1的参数方程为( 为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)已知曲线C2的极坐标方程为,点A是曲线C3与C1的交点,点B是曲线C3与C2的交点,且A,B均异于原点O,且|AB|=4,求α的值.
已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且交椭圆于两点,点在直线上的射影依次为.
(1)求椭圆的方程;
(2)若直线交轴于点,且,当变化时,证明:为定值;
(3)当变化时,直线与是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
已知函数,.
(Ⅰ)记,试判断函数的极值点的情况;
(Ⅱ)若有且仅有两个整数解,求实数的取值范围.
某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标值为M,当M≥85时,产品为一级品;当75≤M<85时,产品为二级品;当70≤M<75时,产品为三级品.现用两种新配方(分别称为A配方和B配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表
B配方的频数分布表
(1)从A配方生产的产品中按等级分层抽样抽取5件产品,再从这5件产品中任取3件,求恰好取到1件二级品的频率;
(2)若这种新产品的利润率y与质量指标M满足如下条件:其中t∈,请分别计算两种配方生产的产品的平均利润率,如果从长期来看,你认为投资哪种配方的产品平均利润率较大?
在如图所示的五面体中,四边形为菱形,且为中点.
(1)求证:平面;
(2)若平面平面,求到平面的距离.
的内角A,B,C的对边分别为a,b,c.已知.
(1)求角C;(2)若,,求的周长.