为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.
节排器等级及利润如表格表示,其中
综合得分的范围 | 节排器等级 | 节排器利润率 |
一级品 | ||
二级品 | ||
三级品 |
(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率;
(2)视频率分布直方图中的频率为概率,用样本估计总体,则
①若从乙型号节排器中随机抽取3件,求二级品数的分布列及数学期望;
②从长期来看,骰子哪种型号的节排器平均利润较大?
在平面直角坐标系中,椭圆的离心率,且点在椭圆上.
(1)求椭圆的方程;
(2)若点都在椭圆上,且中点在线段(不包括端点)上.
①求直线的斜率;
②求面积的最大值.
已知的展开式中前三项的系数为等差数列.
(1)求二项式系数最大项;
(2)求展开式中系数最大的项.
孝感市某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中用分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:类(不参加课外阅读),类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时).调查结果如表:
| 类 | 类 | 类 |
男生 | 5 | 3 | |
女生 | 3 | 3 |
(1)求出表中的值;
(2)根据表中的统计数据,完成下面的列联表,井判断是否有90%的把握认为“参加阅读与否”与性别有关;
| 男生 | 女生 | 总计 |
不参加课外阅读 |
|
|
|
参加课外阅读 |
|
|
|
总计 |
|
|
|
(3)从抽出的女生中再随机抽取3人进一步了解情况,记X为抽取的这3名女生中A类女生人数,求X的数学期望.
附:.
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
设命题:实数满足,其中,命题:实数满足.
(1)若,且,都是正确的,求实数的取值范围;
(2)若是的充分不必要条件,求实数的取值范围.
设有关于的一元二次方程.
(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.
(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.