如图所示,滑块A的质量m=0.05kg,与水平地面间的动摩擦因数μ=0.2,用长度不等的细线悬挂的若干个小球,质量均为m=0.05kg,沿x轴排列,且小球与地面间无弹力。滑块A与第1只小球及相邻两小球间距离均为s=2m,细线长分别为L1、L2、L3……(图中只画三只小球,滑块、小球可视为质点)。开始时,滑块A以速度v0=10m/s沿轴正方向运动,设滑块与小球相互碰撞前后速度互相交换,碰撞后小球均恰能在竖直平面内做完整的圆周运动,并再次与滑块碰撞。g取10m/s2,求:
(1)滑块与第1只小球碰撞后瞬间,悬线对小球的拉力为多大?
(2)滑块能与几个小球碰撞?
(3)写出碰撞中第k个小球悬线长Lk的表达式。
如图所示,在xoy平面内,第Ⅲ象限内的直线OM是电场与磁场的边界,OM与负x轴成45°角。在x<0且OM的左侧空间存在着负x方向的匀强电场E,场强大小为0.32N/C; 在y<0且OM的右侧空间存在着垂直纸面向里的匀强磁场B,磁感应强度大小为0.1T。一不计重力的带负电的微粒,从坐标原点O沿y轴负方向以v0=2×103m/s的初速度进入磁场,最终离开电磁场区域。已知微粒的电荷量q=5×10-18C,质量m=1×10-24kg,求:
(2)带电微粒在磁场区域运动的总时间;
(3)带电微粒最终离开电、磁场区域的位置坐标。
如图所示,物块质量m=0.5kg(可看作质点),它与木板之间动摩擦因数μ1=0.5。长L=3m、质量M=2kg的木板,静止于粗糙水平地面上,木板与水平地面间的动摩擦因数μ2=0.02。现给物块一个初速度v0,使物块从木板的左端滑上木板,物块刚好不会从木板上滑下。g取10m/s2,求:
(1)物块与木板间相对运动的过程中,物块加速度a1的大小及木板加速度a2的大小
(2)物块的初速度v0。
(3)整个运动过程中水平地面对木板的摩擦力所做的功。
如图所示,一电荷量q=3×10-4C带正电的小球,用绝缘细线悬于竖直放置足够大的平行金属板中的O点。S合上后,小球静止时,细线与竖直方向的夹角α=37°。已知两板相距d=0.1m,电源电动势E=12V,内阻r=2Ω,电阻R1=4Ω,R2=R3= R4 =12Ω。g取10m/s2。求:
(1)流过电源的电流强度;
(2)两板间的电场强度的大小;
(3)小球的质量。
(1)(6分)某同学在用多用电表的欧姆挡测量电阻时,先将选择开关旋至“×100”档,将红黑表笔相接,调节调零旋钮,使指针指在电阻的零刻度;然后将两表笔分别与待测电阻的两个引线相连,这时发现指针偏转角度太大,为了使测量读数比较准确,他应该将选择开关旋至 ▲_____挡。再将红黑表笔分别与电阻的两个引线相连,读出指针所指的示数即为待测电阻阻 值。该同学操作上有何不当之处? ▲
(2)(12分)为了测定一节干电池的电动势和内电阻,某实验小组按图(甲)所示的电路正确连接好实验电路,合上开关S后,当滑动变阻器的滑动触头P由A端向B端逐渐滑动时,发现电流表的示数逐渐增大,而电压表的示数接近1.5V且几乎不变,直到当滑动触头P滑至临近B端时,电压表的示数急剧变化,出现上述情况的原因是
▲ 。
经改进后,测出几组电流、电压的数值,并画出如图(乙)所示图像,由图像可知,这个电池的电动势E= ▲ V,内电阻r= ▲ (结果小数点后保留2位)。用(甲)图所示连接方法测出的电动势和内阻的测量值与真实值相比: E测▲ E真,r测▲ r真。(填“大于”、“小于”、“等于”)
在“探究加速度与力、质量关系”的实验中,(1)某小组得到一条打点的纸带,如图所示,已知相邻计数点间的时间间隔为T,且间距x1、x2、x3、x4、x5、x6已量出,则D点的瞬时速度的表达式:vD= ▲ _;加速度的表达式:a= ▲ 。
(2)另一小组在该实验中得到了如下一组实验数据:
F/N |
0.196 |
0.294 |
0.392 |
0.490 |
0.588 |
a/m·s-2 |
0.25 |
0.58 |
0.90 |
1.20 |
1.53 |
① 请在图示的坐标中画出a—F的图线
②从图中可以发现实验操作中存在的问题
可能是 ▲ (填字母序号)
A.实验没有平衡摩擦力
B.实验中平衡摩擦力时木板倾角过小
C.实验中平衡摩擦力时木板倾角过大
D.实验中小车质量发生变化