满分5 > 高中数学试题 >

如图,将圆分成n个区域,用3种不同颜色给每一个区域染色,要求相邻区域颜色互异,把...

如图,将圆分成n个区域,用3种不同颜色给每一个区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为an.求
(Ⅰ)a1,a2,a3,a4
(Ⅱ)an与an+1(n≥2)的关系式;
(Ⅲ)数列{an}的通项公式an,并证明an≥2n(n∈N*).

manfen5.com 满分网
(Ⅰ)直接求出n=1时a1,n=2时a2,n=3时a3,n=4时a4;的值; (Ⅱ)依次对扇形区域染色求出an然后说明它与an+1(n≥2)的关系式; (Ⅲ)通过an与an+1(n≥2)的关系式;令n=1,2,3,4,…n时写出关系式,利用累加法求出数列{an}的通项公式an, 要证明an≥2n(n∈N*)需要已知n=1,n=2,n=3时成立,然后利用二项式定理证明表达式成立即可.. 【解析】 (Ⅰ) 当n=1时,不同的染色方法种数a1=3, 当n=2时,不同的染色方法种数a2=6, 当n=3时,不同的染色方法种数a3=6, 当n=4时,分扇形区域1,3同色与异色两种情形 ∴不同的染色方法种数a4=3×1×2×2+3×2×1×1=18. (Ⅱ)依次对扇形区域1,2,3,…n,n+1染色,不同的染色方法种数为3×2n,其中扇形区域1与n+1不同色的有an+1种,扇形区域1与n+1同色的有an种 ∴an+an+1=3×2n(n≥2) (Ⅲ)∵an+an+1=3×2n(n≥2) ∴a2+a3=3×22 a3+a4=3×23 … an-1+an=3×2n-1将上述n-2个等式两边分别乘以(-1)k(k=2,3…n-1),再相加,得 a2+(-1)n-1an=3×22-3×23+…+3×(-1)k×2n-1=, ∴an=2n+2•(-1)n从而. (Ⅲ)证明:当n=1时,a1=3>2×1 当n=2时,a2=6>2×2, 当n≥3时, an=2n+2•(-1)n=(1+1)n+2•(-1)n =1+n+C2n+C3n+…+Cn-2n+n+1+2•(-1)n ≥2n+2+2(-1)n≥2n, 故an≥2n(n∈N*).
复制答案
考点分析:
相关试题推荐
已知等比数列{an}中,a2=32,manfen5.com 满分网,an+1<an
(1)求数列{an}的通项公式;
(2)设Tn=log2a1+log2a2+…+log2an,求Tn的最大值及相应的n值.
查看答案
已知数列{log2(an-1)}n∈N*)为等差数列,且a1=3,a3=9.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网<1.
查看答案
函数f(x)对任意x∈R都有f(x)+f(1-x)=1
(1)求f(manfen5.com 满分网)的值;
(2)数列{an}满足:an=f(0)+f(manfen5.com 满分网+fmanfen5.com 满分网+L+f(manfen5.com 满分网)+f(1),求an
(3)令bn=manfen5.com 满分网,Tn=b12+b22+L+bn2,Sn=manfen5.com 满分网,试比较Tn与Sn的大小、
查看答案
已知等差数列{an}满足a3+a4=9,a2+a6=10;又数列{bn}满足nb1+(n-1)b2+…+2bn-1+bn=Sn,其中Sn是首项为1,公比为manfen5.com 满分网的等比数列的前n项和.
(1)求an的表达式;
(2)若cn=-anbn,试问数列{cn}中是否存在整数k,使得对任意的正整数n都有cn≤ck成立?并证明你的结论.
查看答案
函数f(x)是定义在[0,1]上,满足manfen5.com 满分网且f(1)=1,在每个区间manfen5.com 满分网(i=1,2,3,…)上,y=f(x)的图象都是平行于x轴的直线的一部分.
(1)求f(0)及manfen5.com 满分网manfen5.com 满分网的值,并归纳出manfen5.com 满分网(i=1,2,3,…)的表达式;
(2)设直线manfen5.com 满分网manfen5.com 满分网,x轴及y=f(x)的图象围成的矩形的面积为ai(i=1,2,3,…),求a1,a2manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.