满分5 > 高中数学试题 >

设分别是椭圆的左、右焦点,直线过交椭圆于两点,交轴于点,若满足,且,则椭圆的离心...

分别是椭圆的左、右焦点,直线交椭圆于两点,交轴于点,若满足,且,则椭圆的离心率为(    )

A. B. C. D.

 

A 【解析】 根据椭圆中线段关系,表示出,,.由余弦定理即可求得a与c的关系,进而求得离心率. 因为F1是椭圆的左焦点,直线过F1交y轴于C点 所以 ,即 , 因为,所以, 又因为, 所以, 在中,,,, 根据余弦定理可得 , 代入得, 化简得 , 所以离心率为. 故选:A
复制答案
考点分析:
相关试题推荐

若关于x的方程在区间上有两个根,且,则实数m的取值范围是  

A. B. C. D.

 

查看答案

已知是双曲线的焦点,以为直径的圆与一条渐近线交于PQ两点,则的面积为  

A. B.1 C. D.2

 

查看答案

执行如图所示的程序框图,当输入的为1时,则输出的结果为(   )

A. 3 B. 4

C. 5 D. 6

 

查看答案

已知实数,则abc的大小关系是  

A. B.

C. D.

 

查看答案

我国南北朝时期数学家、天文学家——祖暅,提出了著名的祖暅原理:“缘幂势即同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两立方体体积相等.已知某不规则几何体与如图三视图所对应的几何体满足“幂势同”,则该不规则几何体的体积为(   )

 

A. B. C. D.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.