(2006•绍兴)某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图象如图. 请结合图象,回答下列问题: (1)根据图中信息,请你写出一个结论; (2)问前15位同学接水结束共需要几分钟? (3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟.”你说可能吗?请说明理由. |
|
(2006•绍兴)我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等? (1)阅读与证明: 对于这两个三角形均为直角三角形,显然它们全等. 对于这两个三角形均为钝角三角形,可证它们全等(证明略). 对于这两个三角形均为锐角三角形,它们也全等,可证明如下: 已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl. 求证:△ABC≌△A1B1C1. (请你将下列证明过程补充完整.) 证明:分别过点B,B1作BD⊥CA于D, B1D1⊥C1A1于D1. 则∠BDC=∠B1D1C1=90°, ∵BC=B1C1,∠C=∠C1, ∴△BCD≌△B1C1D1, ∴BD=B1D1. (2)归纳与叙述: 由(1)可得到一个正确结论,请你写出这个结论. |
|
(2006•绍兴)邮政部门规定:信函重100克以内(包括100克)每20克贴邮票0.8元,不足20克重以20克计算;超过100克,先贴邮票4元,超过100克部分每100克加贴邮票2元,不足100克重以100克计算. (1)若要寄一封重35克的信函,则需贴邮票多少元? (2)若寄一封信函贴了6元邮票,问此信函可能有多少重? (3)七(1)班有九位同学参加环保知识竞赛,若每份答卷重12克,每个信封重4克.请你设计方案,将这9份答卷分装在两个信封中寄出,使所贴邮票的总金额最少. |
|
(2006•绍兴)某校教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长22m,坡角∠BAD=68°,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡. (1)求改造前坡顶与地面的距离BE的长(精确到0.1m); (2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC削进到F点处,问BF至少是多少米?(精确到0.1m) (参考数据:sin68°=0.9272,cos68°=0.3746,tan68°=2.4751,sin50°=0.766O,cos50°=0.6428,tan50°=1.1918) |
|
(2006•绍兴)如图表示某校七年级360位同学购买不同品牌计算器人数的扇形统计图,每位同学购买一只计算器.试回答下列问题: (1)分别求出购买各品牌计算器的人数; (2)试画出购买不同品牌计算器人数的条形图. |
|
(2006•绍兴)如图,在网格中有两个全等的图形(阴影部分),用这两个图形拼成轴对称图形,试分别在图(1)、(2)中画出两种不同的拼法. |
|
(2006•绍兴)解方程:. |
|
(2006•绍兴)计算:(-1)×()-1+sin45°. |
|
(2006•绍兴)如图,将边长为1的正方形OAPB沿z轴正方向连续翻转2006次,点P依次落在点P1,P2,P3,P4,…,P2006的位置,则P2006的横坐标x2006= . |
|
(2006•绍兴)如图,一次函数y=z+5的图象经过点P(a,b)和Q(c,d),则a(c-d)-b(c-d)的值为 . |
|