如图,点A、B在直线MN上,AB=11cm,⊙A、⊙B的半径为1cm. ⊙A以每秒2cm的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0). (1)当t=1时,AB= cm;当t=6时,AB= cm; (2)问点A出发后多少秒两圆相切?
|
|
高致病性禽流感是比SARS传染速度更快的传染病,为了防止禽流感蔓延,政府规定离疫点3km范围内为扑杀区;离疫点3km—5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km. (1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹); (2)求这条公路在免疫区内大约有多少千米?(=1.732,=2.236,结果精确到0.01km.)
|
|
如图①,要设计一幅宽20cm、长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度? 分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2χ,则每个竖彩条的宽为3χ.将横、竖彩条分别集中,则原问题转化为如图②的情况,得到矩形ABCD. 结合以上分析完成填空: 如图②,用含有χ的代数式表示:AB= cm,AD= cm.列出方程并完成本题解答。
|
|
已知:如图,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线与AB的延长线交于点D。若∠CAB=30°,AB=30,求BD的长。
|
|
如图,在△ABC中,AB=AC,E、F分别为AB,AC上的点(E、F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A'EF,再展平. (1)请证明四边形AE A'F为菱形; (2)当等腰△ABC满足什么条件时,按上述方法操作,四边形AE A'F将变成正方形?(只写结果,不作证明)
|
|
解方程:(1)2x2-3x-1=0;(2)8y2-3=4y(配方法)
|
|
计算:(1);(2)
|
|
如图,以O为圆心的两个同心圆的半径分别为5和3,大圆的弦AB交小圆于点C、D,则弦AB的取值范围是____________。
|
|
如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的半径是 cm.
|
|
如图,PA、PB、DE分别切⊙O于A、B、C,如果ΔPDE的周长为8,那么PA=_______
|
|