(本小题满分7分)如图,四边形中,, 平分,交于. 1.(1)求证:四边形是菱形; 2.(2)若点是的中点,试判断的形状,并说明理由.
|
|
(本小题满分6分) 如图,平行四边形ABCD中,E、F是对角线BD上的点,且 求证:
|
|
(本小题满分10分)解不等式组或方程 1.(1) 2.(2)
|
|
(本小题满分8分)计算或化简: 1.(1)-. 2.(2)
|
|
水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度(指缠绕中将部分带子拉成图中所示的平面ABCD时的∠ABC,其中AB为管道侧面母线的一部分).若带子宽度为1,水管直径为4,则的余弦值为 ▲ .
|
|
如图,在直角坐标系中,已知点,,对△连续作旋转变换,依次得到三角形①、②、③、④…,则三角形的直角顶点的坐标为 ▲ .
|
|
如图,反比例函数的图象与直线相交于B两点,AC∥轴, BC∥轴,则图中阴影部分的面积等于 ▲ 个面积单位.
|
|
如图,直线AB与半径为2的⊙O相切于点C,点D、E、F是⊙O上三个点,EF//AB,若EF=,则∠EDC的度数为__ ▲ .
|
|
如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是 ▲ ,△EDC与△ABC的面积之比为 ▲
|
|
一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是 ▲ .
|
|