若代数式2x2+3x+7的值为8,则代数式4x2+6x—9的值是 。
|
|
计算:若(a—2)2与互为相反数,则= 。
|
|
若0<x<1,则把x,x2,从小到大排列为: 。
|
|
,则x= 。
|
|
(10分)如图,已知抛物线与轴交于A(1,0),B(,0)两点,与轴交于点 C(0,3),抛物线的顶点为P,连结AC. (1)求此抛物线的解析式; (2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与轴交于点Q,求点D的坐标; (3)抛物线对称轴上是否存在一点M,使得S△MAP=2S△ACP,若存在,求出M点坐标;若不存在,请说明理由.
|
|
(7分)我市化工园区一化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题: (1)设装运A种物资的车辆数为,装运B种物资的车辆数为.求与的函数关系式; (2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案; (3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.
|
|||||||||||||
(6分)如图,在△ABC中,∠A=90°,∠B=60°,AB=3,点D从点A以每秒1个单位长度的速度向点B运动(点D不与B重合),过点D作DE∥BC交AC于点E.以DE为直径作⊙O,并在⊙O内作内接矩形ADFE,设点D的运动时间为秒. (1)用含的代数式表示△DEF的面积S; (2)当为何值时,⊙O与直线BC相切?
|
|
(6分)如图,△ABC的边BC在直线上,AC⊥BC,且AC=BC,△DEF的边FE也在直线上,边DF与边AC重合,且DF=EF. (1)在图(1)中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明) (2)将△DEF沿直线向左平移到图(2)的位置时,DE交AC于点G,连结AE,BG.猜想△BCG与△ACE能否通过旋转重合?请证明你的猜想.
|
|
(6分)在△ABC和△DEF中,∠C=∠F=90°.有如下五张背面完全相同的纸牌①、②、③、④、⑤,其正面分别写有五个不同的等式,小民将这五张纸牌背面朝上洗匀后先随机摸出一张(不放回),再随机摸出一张.请结合以上条件,解答下列问题. (1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用①、②、③、④、⑤表示); (2)用两次摸牌的结果和∠C=∠F=90°作为条件,求能满足△ABC和△DEF全等的概率.
|
|
(6分)给出下列命题: 命题1:直线与双曲线有一个交点是(1,1); 命题2:直线与双曲线有一个交点是(,4); 命题3:直线与双曲线有一个交点是(,9); 命题4:直线与双曲线有一个交点是(,16); …………………………………………………… (1)请你阅读、观察上面命题,猜想出命题(为正整数); (2)请验证你猜想的命题是真命题.
|
|