如图,由点P(14,1),A(a,0),B(0,a)(0<a<14)确定的△PAB的面积为18,则a的值为_____.
|
|
已知 ,是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足=﹣1,则m的值是____.
|
|
已知△ABC是等腰直角三角形,∠A=90°,点D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E. (1)若BD是AC边上的中线,如图1,求的值; (2)若BD是∠ABC的角平分线,如图2,求的值.
|
|
如图,在平面直角坐标系中,直线l与x轴相交于点M(3,0),与y轴相交于点N(0,4),点A为MN的中点,反比例函数y=(x>0)的图象过点A. (1)求直线l和反比例函数的解析式; (2)在函数y=(k>0)的图象上取异于点A的一点C,作CB⊥x轴于点B,连接OC交直线l于点P,若△ONP的面积是△OBC面积的3倍,求点P的坐标.
|
|
据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的网民们关注的热点话题分别有:消费、教育、环保、反腐、及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l所示,关注该五类热点问题网民的人数的不完整条形统计如图2所示,请根据图中信息解答下列问题. (1)求出图l中关注“反腐”类问题的网民所占百分比x的值,并将图2中的不完整的条形统计图补充完整; (2)为了深入探讨政府工作报告,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表,请你用列表法或画树状图的方法,求出一次所选代表恰好是甲和乙的概率.
|
|
小明利用灯光下自己的影子长度来测量路灯的高度.如图,CD和EF是两等高的路灯,相距27m,身高1.5m的小明(AB)站在两路灯之间(D、B、F共线),被两路灯同时照射留在地面的影长BQ=4m,BP=5m. (1)小明距离路灯多远? (2)求路灯高度.
|
|
如图,在Rt△ABC中,∠ACB=90°,D为AB中点,AE∥CD,CE∥AB. (1)试判断四边形ADCE的形状,并证明你的结论. (2)连接BE,若∠BAC=30°,CE=1,求BE的长.
|
|
解方程 (1) (2)2(x﹣2)2=x2﹣4
|
|
如图,△ABC中,D是AC的中点,E是BC延长线上一点,过A作AH∥BE,连结ED并延长交AB于F,交AH于H,如果AB=4AF,EH=8,则DF的长为_____.
|
|
一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“小于3”的概率为__________.
|
|