如图是小玲设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是 米. |
|
张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,同时与他邻近的一棵树的影长为6米,则这棵树的高为( ) A.3.2米 B.4.8米 C.5.2米 D.5.6米 |
|
为测量被荷花池相隔的两树A、B的距离,数学活动小组设计了如图所示的测量方案:在AB的垂线AP上取两点C、E,再定出AP的垂线FE,使F、C、B在一条直线上.其中三位同学分别测量出了三组数据: (1)AC、∠ACB; (2)AC、CE; (3)EF、CE、AC. 能根据所测数据,求得A、B两树距离的是( ) A.(1) B.(1),(2) C.(2),(3) D.(1),(3) |
|
如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN=2米,窗户的下檐到教室地面的距离BC=1米(点M、N、C在同一直线上),则窗户的高AB为( ) A.米 B.3米 C.2米 D.1.5米 |
|
某同学利用影子的长度测量操场上旗杆的高度,在同一时刻,他测得自己的影子长为0.8m,旗杆的影子长为7m,已知他自己的身高为1.6m,则旗杆的高度为( ) A.8m B.10m C.12m D.14m |
|
在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为( ) A.60米 B.40米 C.30米 D.25米 |
|
如图,小亮同学在晚上由路灯A走向路灯B,当他走到点P时,发现他的身影顶部正好接触路灯B的底部,这时他离路灯A25米,离路灯B5米,如果小亮的身高为1.6米,那么路灯高度为( ) A.6.4米 B.8米 C.9.6米 D.11.2米 |
|
如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为( ) A.1.5m B.1.6m C.1.86m D.2.16m |
|
如图,为了测量一池塘的宽DE,在岸边找到一点C,测得CD=30m,在DC的延长线上找一点A,测得AC=5m,过点A作AB∥DE交EC的延长线于B,测出AB=6m,则池塘的宽DE为( ) A.25m B.30m C.36m D.40m |
|
如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,则树的高度为( ) A.4.8m B.6.4m C.8m D.10m |
|