(Ⅰ)如图1,点P在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交AD,CD于点R,T.求证:PQ•PR=PS•PT; (Ⅱ)如图2,图3,当点P在平行四边形ABCD的对角线BD或DB的延长线上时,PQ•PR=PS•PT是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明); (Ⅲ)如图4,ABCD为正方形,A,E,F,G四点在同一条直线上,并且AE=6cm,EF=4cm,试以(Ⅰ)所得结论为依据,求线段FG的长度. |
|
把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q. (1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=______; (2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由; (3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用) |
|
如图,四边形ABCD内接于⊙O,AC与BD相交于点E,AB=CD. (1)求证:AC=BD; (2)若F是⊙O上一点,且,AF的延长线与DB的延长线交于点P,求证:ED2=EB•EP. |
|
如图,在平行四边形ABCD中,过点B作BE⊥CD于E,F为AE上一点,且∠BFE=∠C. (1)求证:△ABF∽△EAD; (2)若AB=5,AD=3,∠BAE=30°,求BF的长. |
|
如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y. (1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式; (2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y与x之间的函数关系式还成立?试说明理由. |
|
已知,如图,AD为Rt△ABC斜边BC上的高,点E为DA延长线上一点,连接BE,过点C作CF⊥BE于点F,交AB、AD于M、N两点. (1)若线段AM、AN的长是关于x的一元二次方程x2-2mx+n2-mn+m2=0的两个实数根,求证:AM=AN; (2)若AN=,DN=,求DE的长; (3)若在(1)的条件下,S△AMN:S△ABE=9:64,且线段BF与EF的长是关于y的一元二次方程5y2-16ky+10k2+5=0的两个实数根,求BC的长. |
|
如图,已知:在Rt△ABC中,∠ACB=90°,sinB=,D是BC上一点,DE⊥AB,垂足为E,CD=DE,AC+CD=9.求BC的长. |
|
在左图的方格纸中有一个Rt△ABC(A、B、C三点均为格点),∠C=90° (1)请你画出将Rt△ABC绕点C顺时针旋转90°后所得到的Rt△A′B′C′,其中A、B的对应点分别是A′、B′(不必写画法); (2)设(1)中AB的延长线与A′B′相交于D点,方格纸中每一个小正方形的边长为1,试求BD的长(精确到0.1). |
|
如图①、②在▱ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD两侧的延长线(或线段CD)相交于点F、G,AF与BG相交于点E. (1)在图①中,求证:AF⊥BG,DF=CG; (2)在图②中,仍有(1)中的AF⊥BG、DF=CG.若AB=10,AD=6,BG=4,求FG和AF的长. |
|
如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M. (1)试说明:AE⊥BF; (2)判断线段DF与CE的大小关系,并予以说明. |
|