E、F为平行四边形ABCD的对角线DB上三等分点,连AE并延长交DC于P,连PF并延长交AB于Q,如图① (1)在备用图中,画出满足上述条件的图形,记为图②,试用刻度尺在图①、②中量得AQ、BQ的长度,估计AQ、BQ间的关系,并填入下表:(长度单位:cm)
(2)上述(1)中的猜测AQ、BQ间的关系成立吗?为什么? (3)若将平行四边形ABCD改为梯形(AB∥CD)其他条件不变,此时(1)中猜测AQ、BQ间的关系是否成立?(不必说明理由) |
|||||||||||||
如图,△ABC内接于⊙O,直径CD⊥AB,垂足为E,弦BF交CD于点M,交AC于点N,且BF=AC,连接AD、AM. 求证:(1)△ACM≌△BCM; (2)AD•BE=DE•BC; (3)BM2=MN•MF. |
|
(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC; (2)如图2所示,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC相似于△ABC,请问仍有AE∥BC?证明你的结论. |
|
如图:在平行四边形ABCD中,E是AD上的一点.求证:. |
|
如图,AF⊥CE,垂足为点O,AO=CO=2,EO=FO=1. (1)求证:点F为BC的中点; (2)求四边形BEOF的面积. |
|
等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转. (1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP; (2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F. ①探究1:△BPE与△CFP还相似吗?(只需写出结论) ②探究2:连接EF,△BPE与△PFE是否相似?请说明理由; ③设EF=m,△EPF的面积为S,试用m的代数式表示S. |
|
如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,CF与AB交于点G,若CF=15cm,求GF之长. |
|
如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度. (1)求证:△ABD∽△DCE; (2)设BD=x,AE=y,求y关于x的函数关系式; (3)当:△ADE是等腰三角形时,求AE的长. |
|
如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a. (1)求证:△ADE∽△BEC; (2)当点E为AB边的中点时(如图2),求证:①AD+BC=CD;②DE,CE分别平分∠ADC,∠BCD; (3)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由. |
|
取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图所示. 试问: (1)当α为多少度时,能使得图②中AB∥DC; (2)当旋转至图③位置,此时α又为多少度图③中你能找出哪几对相似三角形,并求其中一对的相似比; (3)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明. |
|