如图,抛物线y=ax2+bx+1与x轴交于两点A(-1,0),B(1,0),与y轴交于点C. (1)求抛物线的解析式; (2)过点B作BD∥CA抛物线交于点D,求四边形ACBD的面积; (3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由. |
|
已知抛物线上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1). (1)求抛物线的解析式; (2)如图,抛物线与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式; (3)当m,n为何值时,∠PMQ的边过点F? |
|
在平面直角坐标系中,已知抛物线y=-x2+bx+c与x轴交于点A、B点A在点B的左侧,与y轴的正半轴交于点C,顶点为E. (1)若b=2,c=3,求此时抛物线顶点E的坐标; (2)将(1)中的抛物线向下平移,若平移后,在四边形ABEC中满足S△BCE=S△ABC,求此时直线BC的解析式; (3)将(1)中的抛物线作适当的平移,若平移后,在四边形ABEC中满足S△BCE=2S△AOC,且顶点E恰好落在直线y=-4x+3上,求此时抛物线的解析式. |
|
如图,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是. (1)求点B的坐标; (2)求过点A、O、B的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由; (4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形,使其中一个三角形面积与四边形BPOD面积比为2:3?若存在,求出点P的坐标;若不存在,请说明理由. |
|
如图,矩形ABCD中,AB=6cm,AD=3cm,点E在边DC上,且DE=4cm.动点P从点A开始沿着A⇒B⇒C⇒E的路线以2cm/s的速度移动,动点Q从点A开始沿着AE以1cm/s的速度移动,当点Q移动到点E时,点P停止移动.若点P、Q同时从点A同时出发,设点Q移动时间为t(s),P、Q两点运动路线与线段PQ围成的图形面积为S(cm2),求S与t的函数关系式. |
|
如图,已知△ABC中,∠A=90°,AB=6,AC=8,D是AB上一动点,DE∥BC,交AC于E,将四边形BDEC沿DE向上翻折,得四边形B'DEC',B'C'与AB、AC分别交于点M、N. (1)证明:△ADE∽△ABC; (2)设AD为x,梯形MDEN的面积为y,试求y与x的函数关系式.当x为何值时y有最大值? |
|
如图,在△ABC中,AB=AC=5,BC=6,动点P从点A出发沿AB向点B移动,(点P与点A、B不重合),作PD∥BC交AC于点D,在DC上取点E,以DE、DP为邻边作平行四边形PFED,使点F到PD的距离,连接BF,设AP=x. (1)△ABC的面积等于______; (2)设△PBF的面积为y,求y与x的函数关系,并求y的最大值. |
|
如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG. (1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长; (2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值. |
|
如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H. (1)求证:; (2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值; (3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式. |
|
已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm. 如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)解答下列问题: (1)当t为何值时,点A在线段PQ的垂直平分线上? (2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由; (3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由. |
|