如图,在△ABC中,M、N分别为AB、AC边上的中点.D、E为BC边上的两点,且DE=BD+EC,ME与ND交于点O,请你写出图中一对全等的三角形,并加以证明. |
|
如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(0<t<5).解答下列问题: (1)当t为何值时,PE∥AB; (2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式; (3)是否存在某一时刻t,使S△PEQ=S△BCD?若存在,求出此时t的值;若不存在,说明理由; (4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由. |
|
如图,正方形ABCD的边长为4cm,点P是BC边上不与点B、C重合的任意一点,连接AP,过点P作PQ⊥AP交DC于点Q,设BP的长为xcm,CQ的长为ycm. (1)点P在BC上运动的过程中y的最大值为______cm; (2)当y=cm时,求x的值为______ |
|
在Rt△ABC中,∠C=90°,AC=3,BC=4,点E在直角边AC上(点E与A、C两点均不重合),点F在斜边AB上(点F与A、B两点均不重合). (1)若EF平分Rt△ABC的周长,设AE长为x,试用含x的代数式表示△AEF的面积; (2)是否存在线段EF将Rt△ABC的周长和面积同时平分?若存在,求出此时AE的长;若不存在,说明理由. |
|
如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y. (1)求y与x的函数关系式; (2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似; (3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由. |
|
在⊙O的内接△ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设⊙O的半径为y,AB的长为x. (1)求y关于x的函数关系式; (2)当AB的长等于多少时,⊙O的面积最大,并求出⊙O的最大面积. |
|
如图1,我们将相同的两块含30°角的直角三角板Rt△DEF与Rt△ABC叠合,使DE在AB上,DE过点C,已知AC=DE=6. (1)将图1中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图2. ①求证:△CQD∽△APD; ②连接PQ,设AP=x,求面积S△PCQ关于x的函数关系式; (2)将图1中的△DEF向左平移(点A、D不重合),使边FD、FE分别交AC、BC于点M、N设AM=t,如图3. ①判断△BEN是什么三角形?并用含t的代数式表示边BE和BN; ②连接MN,求面积S△MCN关于t的函数关系式; (3)在旋转△DEF的过程中,试探求AC上是否存在点P,使得S△PCQ等于平移所得S△MCN的最大值?说明你的理由. |
|
如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究: (1)线段AE与CG是否相等请说明理由: (2)若设AE=x,DH=y,当x取何值时,y最大? (3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE? |
|
如图,在△ABC中,AB=AC,E是高AD上的动点,F是点D关于点E的对称点(点F在高AD上,且不与A,D重合).过点F作BC的平行线与AB交于G,与AC交于H,连接GE并延长交BC于点I,连接HE并延长交BC于点J,连接GJ,HI. (1)求证:四边形GHIJ是矩形; (2)若BC=10,AD=6,设DE=x,S矩形GHIJ=y. ①求y与x的函数关系式,并写出自变量x的取值范围; ②点E在何处时,矩形GHIJ的面积与△AGH的面积相等? |
|
在梯形ABCD中,AB∥CD,AB=8cm,CD=2cm,AD=BC=6cm,M、N为同时从A点出发的两个动点,点M沿A⇒D⇒C⇒B的方向运动,速度为2cm/秒;点N沿A⇒B的方向运动,速度为1cm/秒.当M、N其中一点到达B点时,点M、N运动停止.设点M、N的运动时间为x秒,以点A、M、N为顶点的三角形的面积为ycm2. (1)试求出当0<x<3时,y与x之间的函数关系式; (2)试求出当4<x<7时,y与x之间的函数关系式; (3)当3<x<4时,以A、M、N为顶点的三角形与以B、M、N为顶点的三角形是否有可能相似?若相似,试求出x的值;若不相似,试说明理由. |
|