如下示意图,是我市香菇培植场常见的半地下室栽培棚,它由两部分组成,地上部分为半圆柱形四周封闭的塑料薄膜保温棚;地下部分为长方体的培植室,室内长30米,宽1.2米的地面上存放菌棒培育香菇. (1)地下培植室内按标准排放菌棒,宽排放8袋,长每米排放4排,求能排放多少袋香菇菌棒? (2)要建这样的保温棚约需多少平方米的塑料薄膜?(不计余料及埋在土里的塑料薄膜,结果精确到0.1平方米) |
|
下图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径为6cm,下底面直径为4cm,母线长EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积.(面积计算结果用π表示). |
|
如图是某工件的三视图,求此工件的全面积. |
|
如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB=12cm,高BC=8cm,求这个零件的表面积.(结果保留π) |
|
如图,圆锥的底面半径r=3cm,高h=4cm.求这个圆锥的表面积.(π取3.14) |
|
在一次科学探究实验中,小明将半径为5cm的圆形滤纸片按图1所示的步骤进行折叠,并围成圆锥形. (1)取一漏斗,上部的圆锥形内壁(忽略漏斗管口处)的母线OB长为6cm,开口圆的直径为6cm.当滤纸片重叠部分三层,且每层为圆时,滤纸围成的圆锥形放入该漏斗中,能否紧贴此漏斗的内壁(忽略漏斗管口处),请你用所学的数学知识说明; (2)假设有一特殊规格的漏斗,其母线长为6cm,开口圆的直径为7.2cm,现将同样大小的滤纸围成重叠部分为三层的圆锥形,放入此漏斗中,且能紧贴漏斗内壁.问重叠部分每层的面积为多少? |
|
已知:如图,△ABC关于y轴对称,点B、P关于y轴的对称点分别是点C、Q.BP=AP=2,且P点坐标为(-1,0). (1)分别写出Q点和C点的坐标,并指出△ABP关于y轴的对称三角形; (2)M为线段CQ上一点,若以x轴为旋转轴,旋转△PAM一周形成的旋转体的全面积为5π,求线段AM的长; (3)N为线段AM上一动点(与点A、M不重合),过点N分别作NH⊥x轴于H,NG⊥y轴于G.求当矩形OHNG的面积最大时N点的坐标. |
|
如图,不透明圆锥体DEC放在水平面上,在A处灯光照射下形成影子.设BP过底面圆的圆心,已知圆锥体的高为m,底面半径为2m,BE=4m. (1)求∠B的度数; (2)若∠ACP=2∠B,求光源A距水平面的高度.(答案用含根号的式子表示) |
|
如图,一个直角三角形两条直角边分别为3cm和4cm,以斜边AB所在直线为轴旋转一周得到一个几何体,在虚线框内画出这个几何体的草图,求这个几何体的表面积. |
|
铁匠王老五要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)请你帮助他算一算可以吗? (1)请说明方案一不可行的理由; (2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由. |
|