下列六个结论: ①有理数和数轴上的点一一对应; ②带根号的数不一定是无理数; ③三角形的内切圆和外接圆是同心圆; ④在数据1,3,3,0,2中,众数是3,中位数是3 ⑤圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线; ⑥一个圆锥的侧面积是一个面积为4π平方厘米的扇形,那么这个圆锥的母线长L和底面半径R之间的函数关系是正比例函数.其中正确的结论的个数是( ) A.0个 B.1个 C.2个 D.3个 |
|
如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于( ) A.1.5cm B.2cm C.3cm D.4cm |
|
△BAC中,AB=5,AC=12,BC=13,以AC所在的直线为轴将△ABC旋转一周得一个几何体,这个几何体的表面积是( ) A.90π B.65π C.156π D.300π |
|
一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,则此圆锥的表面积为( ) A.4πcm2 B.12πcm2 C.16πcm2 D.28πcm2 |
|
如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( ) A.12πcm2 B.15πcm2 C.18πcm2 D.24πcm2 |
|
如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是( ) A.π B.24π C.π D.12π |
|
如图,从一个直径为2的圆形铁皮中剪下一个圆心角为60°的扇形ABC,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径为( ) A. B. C. D. |
|
已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( ) A.2.5 B.5 C.10 D.15 |
|
如图,PA、PB与⊙O相切,切点分别为A、B,PA=3,∠P=60°,若AC为⊙O的直径,则图中阴影部分的面积为( ) A. B. C. D.π |
|
如图,四边形OBCA为正方形,图1是以AB为直径画半圆,阴影部分面积记为S1,图2是以O为圆心,OA长为半径画弧,阴影部分面积记为S2,则S1,S2的大小关系为( ) A.S1<S2 B.S1=S2 C.S1>S2 D.无法判断 |
|