-4的倒数是( ) A. B.- C.4 D.-4 |
|
如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,. (1)求这个二次函数的表达式; (2)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度; (3)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,点P到直线AG的距离最大?求出此时P点的坐标和点P到直线AG的最大距离. |
|
某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案; (3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销的活动. 按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折的一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果) |
|||||||||
如图,在Rt△ABC中,已知∠ACB=90°,且CH⊥AB,HE⊥BC,HF⊥AC. 求证:(1)△HEF≌△EHC; (2)△HEF∽△HBC. |
|
如图(一),在平面直角坐标系中,射线OA与x轴的正半轴重合,射线OA绕着原点O逆时针到OB位置,把转过的角度记为α,把射线OA称为∠α的始边,射线OB称为∠α的终边、设α是一个任意角,α的终边上任意一点P(除端点外)的坐标是P(x,y),它到原点的距离是,那么定义:∠α的正弦,∠α的余弦,∠α的正切. 根据以上的定义当α=120°时,如图(二)在120°角的终边OB上取一点P(),则;,, 根据以上所学知识填空: (1)sin150°=______,cos150°=______ |
|
某人往返于甲、乙两地,去时步行2千米,再乘汽车行10千米;回来时骑自行车,来去所用时间恰好一样,已知汽车的速度是步行速度的5倍,骑自行车比步行每小时多行8千米,求这人步行的速度. |
|
先化简,再求值,其中. |
|
解不等式组,并把解集在数轴上表示出来. . |
|
解方程组:. |
|
解方程: (1)x2+2x-12=0; (2). |
|