如图,⊙O中,弦AB的长为6cm,圆心O到AB的距离为4cm,则⊙O的半径长为( ) A.3cm B.4cm C.5cm D.6cm |
|
函数y=x(x-4)是( ) A.一次函数 B.二次函数 C.正比例函数 D.反比例函数 |
|
如图,已知圆心角∠BOC=100°,则圆周角∠BAC的大小是( ) A.50° B.100° C.130° D.200° |
|
下列函数中,图象经过点(1,-1)的反比例函数解析式是( ) A.y= B.y= C.y= D.y= |
|
(1)已知二次函数y=ax2+bx+c(a≠0)的图象开口向下,并经过点(-1,2),(1,0).下列命题其中一定正确的是______. (把你认为正确结论的序号都填上,少填或错填不给分). ①当x≥0时,函数值y随x的增大而增大 ②当x≤0时,函数值y随x的增大而减小 ③存在一个正数m,使得当x≤m时,函数值y随x的增大而增大;当x≥m时,函数值y随x的增大而减小 ④存在一个负数m,使得当x≤m时,函数值y随x的增大而增大;当x≥m时,函数值y随x的增大而减小, ⑤a+2b>-2c (2)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动. 请探索:是否存在这样的点M,使得线段PB最短;若存在,请求出此时点M的坐标.若不存在,请说明理由. |
|
已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-). (1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象; (2)若反比例函数y2=(x>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内交于点A(x,y),x落在两个相邻的正整数之间,请你观察图象,写出这两个相邻的正整数; (3)若反比例函数y2=(x>0,k>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内的交点A,点A的横坐标x满足2<x<3,试求实数k的取值范围. |
|
已知:等腰三角形OAB在直角坐标系中的位置如图,点A的坐标为(),点B的坐标为(-6,0). (1)若三角形OAB关于y轴的轴对称图形是三角形OA′B′,请直接写出A、B的对称点A′、B′的坐标; (2)若将三角形OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数y=的图象上,求a的值; (3)若三角形OAB绕点O按逆时针方向旋转α度(0<α<90). ①当α=30°时点B恰好落在反比例函数y=的图象上,求k的值; ②问点A、B能否同时落在①中的反比例函数的图象上,若能,求出α的值;若不能,请说明理由. |
|
跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9. (1)求该抛物线的解析式; (2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高; (3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米,绳子甩到最高处时超过她的头顶,请结合图象,写出t的取值范围______. |
|
某气球内充满了一定质量的气球,当温度不变时,气球内气球的气压p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示.(千帕是一种压强单位) (1)写出这个函数的解析式; (2)当气球的体积为0.8立方米时,气球内的气压是多少千帕? (3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米? |
|
(1)已知二次函数y=-2x2+8,求这个函数图象的顶点坐标、对称轴以及函数的最大值; (2)已知二次函数的图象经过点(0,-1),且顶点坐标为(2,-3).求该二次函数的解析式. |
|