如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0),∠ABO=60°. (1)求作△AOB的外接圆圆心P,并求出P点的坐标; (2)若⊙P与y轴交于点D,求D点的坐标; (3)若CD是⊙P的切线,求直线CD的函数解析式. |
|
如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c. 阅读理【解析】 (1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周; (2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转周. 实践应用: (1)在阅读理解的(1)中,若AB=2c,则⊙O自转______周;若AB=l,则⊙O自转______周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转______周;若∠ABC=60°,则⊙O在点B处自转______周; (2)如图3,∠ABC=90°,AB=BC=c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转______周. 拓展联想: (1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由; (2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数. |
|
(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G, 求证:阴影部分四边形OFCG的面积是△ABC的面积的. (2)如图2,若∠DOE保持120°角度不变, 求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的. |
|
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元? |
|
已知关于x的方程(x-3)(x-2)-p2=0 (1)无论p为何值时,方程(x-3)(x-2)-p2=0总有两个不相等的实数根吗?给出你的答案并说明理由.(2)若方程的一个根是x1=1,求方程的另一个根x2及p的值. |
|
如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD. (1)求证:CD是⊙O的切线; (2)若⊙O的半径为10cm,∠A=60°,求CD的长. |
|
在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点). (1)画出△ABC绕点O逆时针旋转90°后的△A′B′C′; (2)求△A′B′C′的面积. |
|
如图,三个半径为r的等圆两两外切,且与△ABC的三边分别相切,求△ABC的边长.(结果保留π) |
|
先化简,再求值:,其中. |
|
计算、解方程: (1); (2)x(2x-5)=4x-10 |
|