如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F. (1)在图中找出一对全等三角形,并加以证明; (2)求证:AE=FC+EF. |
|
已知▱ABCD中,AB=4,AD=2,E是AB边上的一动点,设AE=x,DE延长线交CB的延长线于F,设CF=y,求y与x之间的函数关系. |
|
如图,已知直线y=-x+4与反比例函数的图象相交于点A(-2,a),并且与x轴相交于点B. (1)求a的值; (2)求反比例函数的表达式; (3)求△AOB的面积. |
|
一位同学想利用有关知识测旗杆的高度,他在某一时刻测得高为0.5m的小木棒的影长为0.3m,但当他马上测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子CD=1.0m,又测地面部分的影长BC=3.0m,你能根据上述数据帮他测出旗杆的高度吗? |
|
如图所示,在三角形纸片ABC中,∠C=90°,∠B=30°,按如下步骤可以把这个直角三角形纸片分成三个全等的小直角三角形(图中虚线表示折痕):①先将点B对折到点A,②将对折后的纸片再沿AD对折. (1)由步骤①可以得到哪些等量关系? (2)请证明△ACD≌△AED; (3)按照这种方法能否将任意一个直角三角形分成三个全等的小三角形. |
|
在四边形中,给出下列四个条件: ①四边都相等,有一个内角是直角; ②四个内角都相等,有一组邻边相等; ③对角线互相垂直,且每一条对角线平分一组对角; ④对角线互相垂直平分且相等; 其中能判定这个四边形为正方形的所有条件分别为( ) A.①② B.③④ C.①②④ D.①②③④ |
|
如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( ) A.1处 B.2处 C.3处 D.4处 |
|
已知正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是( ) A.(2,1) B.(-2,-1) C.(-2,1) D.(2,-1) |
|
小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是( ) A.矩形 B.正方形 C.等腰梯形 D.无法确定 |
|
如图是一个用于防震的L形的包装用泡沫塑料,当俯视它时看到的图形形状是( ) A. B. C. D. |
|