如图,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点. (1)指出旋转中心,并求出旋转的度数; (2)求出∠BAE的度数和AE的长. |
|
如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD. (1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想; (2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由. |
|
如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1). (1)作出△ABC关于原点O中心对称的图形; (2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标. |
|
如图,作图说明△A′B′C′是由△ABC通过怎样的图形变换(平移、旋转、轴对称)得到的. |
|
如图,△DEF是由△ABC旋转得到的,请作出它的旋转中心. |
|
如图,A点坐标为(3,3),将△ABC先向下平移4个单位得△A′B′C′,再将△A′B′C′绕点O逆时针旋转180°得△A″B″C″.请你画出△A′B′C′和△A″B″C″,并写出点A″的坐标. |
|
图1中,可以经过旋转和翻折形成图案2的梯形符合条件为( ) A.等腰梯形 B.上底与两腰相等的等腰梯形 C.底角为60°且上底与两腰相等的等腰梯形 D.底角为60°的等腰梯形 |
|
顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 |
|
下列图形中,( )旋转90°后能与自身重合. A. B. C. D. |
|
数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是( ) A.甲 B.乙 C.丙 D.丁 |
|