为了鼓励城市周边的农民的种菜的积极性,某公司计划新建A,B两种温室80栋,将其中售给农民种菜.该公司建设温室所筹资金不少于209.6万元,但不超过210.2万元.且所筹资金全部用于新建温室.两种温室的成本和出售价如下表:
| A型 | B型 | 成本(万元/栋) | 2.5 | 2.8 | 出售价(万元/栋) | 3.1 | 3.5 | (1)这两种温室有几种设计方案? (2)根据市场调查,每栋A型温室的售价不会改变,每栋B型温室的售价可降低m万元(0.1<m<0.7)且所建的两种温室可全部售出.为了减轻菜农负担,试问采用什么方案建设温室可使利润最少.
|
|
如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上. (1)求证:△AOC≌△BOD; (2)若AB=3,AD:BD=1:2,求CD的长.
|
|
为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了奉市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:
根据以上信息解答下列问题: (1)补全条形统计图,并计算扇形统计图中m=______; (2)该市支持选项B的司机大约有多少人? (3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?
|
|
如图,在方格纸中的三个顶点及A、B、C、D、E五个点都在小方格的顶点上.现以A、B、C、D、E中的三个点为顶点画三角形. (1)在图甲中画出一个三角形与△PQR全等; (2)在图乙中画出一个三角形与△PQR面积相等但不全等
|
|
一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
|
|
(1)计算:()-1 (2)已知a2+2a=-1,求2a(a+1)-(a+2)(a-2)的值.
|
|
如图,在平面直角坐标系中,∠AOB=30°,点A坐标为(2,0).过A作AA1⊥OB,垂足为A1;过A1作A1A2⊥x轴,垂足为A2;再过点A2作A2A3⊥OB,垂足为点A3;再过点A3作A3A4⊥x轴,垂足为A4…;这样一直作下去,则A2013的纵坐标为 .
|
|
如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,AC=4,BC=2.则sin∠ABD= .
|
|
已知一个圆锥的底面半径长为3cm、母线长为6cm,则圆锥的侧面积是 cm2.
|
|
生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为 只.
|
|