如图,D是等腰Rt△ABC内一点,BC是斜边,如果将△ABD绕点A按逆时针方向旋转到△ACD′的位置,则∠ADD′的度数是( ) A.25° B.30° C.35° D.45° |
|
不等式组的解集在数轴上可以表示为( ) A. B. C. D. |
|
如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( ) A.同位角相等,两直线平行 B.内错角相等,两直线平行 C.同旁内角互补,两直线平行 D.两直线平行,同位角相等 |
|
水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是( ) A.O B.9 C.快 D.乐 |
|
下列运算正确的是( ) A.2x5-3x3=-x2 B. C.(-x)5•(-x2)=-x10 D.(3a6x3-9ax5)÷(-3ax3)=3x2-a5 |
|
-的绝对值是( ) A.-2 B.- C.2 D. |
|
矩形纸片ABCD中,AB=5,AD=4. (1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由; (2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上). |
|
△ABC是等边三角形,点A与点D的坐标分别是A(4,0),D(10,0). (1)如图1,当点C与点O重合时,求直线BD的解析式; (2)如图2,点C从点O沿y轴向下移动,当以点B为圆心,AB为半径的⊙B与y轴相切(切点为C)时,求点B的坐标; (3)如图3,点C从点O沿y轴向下移动,当点C的坐标为C(0,)时,求∠ODB的正切值. |
|
分别以▱ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF. (1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的关系(只写结论,不需证明); (2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由. |
|
关于x的一元二次方程(a-6)x2-8x+9=0有实根. (1)求a的最大整数值; (2)当a取最大整数值时,①求出该方程的根;②求的值. |
|