下列各式中,计算正确的是( ) A.2x+3y=5xy B.x6÷x2=x3 C.x2•x3=x5 D.(-x3)3=x6 |
|
-的绝对值是( ) A. B.- C. D.- |
|
已知两直线l1,l2分别经过点A(1,0),点B(-3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l1交于点K,如图所示. (1)求点C的坐标,并求出抛物线的函数解析式; (2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由; (3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标. |
|
如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D. (1)求证:AC平分∠DAB; (2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法); (3)若CD=4,AC=4,求垂线段OE的长. |
|
如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E. (1)求点B的坐标; (2)求证:四边形ABCE是平行四边形; (3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长. |
|
莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨. (1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨? (2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润. |
|
已知反比例函数的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2), (1)求这两个函数的关系式; (2)观察图象,写出使得y1>y2成立的自变量x的取值范围. |
|
九年级某班组织班团活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件. (1)有多少种购买方案?请列举所有可能的结果; (2)从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率. |
|
先化简,再求值:,其中x所取的值是在-2<x≤3内的一个整数. |
|
边长为2的两种正方形卡片如图①所示,卡片中的扇形半径均为2.图②是交替摆放A、B两种卡片得到的图案.若摆放这个图案共用两种卡片21张,则这个图案中阴影部分图形的面积和为 (结果保留π). |
|